On the Expressive Power of Deep Learning: A Tensor Analysis
نویسندگان
چکیده
It has long been conjectured that hypothesis spaces suitable for data that is compositional in nature, such as text or images, may be more efficiently represented with deep hierarchical architectures than with shallow ones. Despite the vast empirical evidence, formal arguments to date are limited and do not capture the kind of networks used in practice. Using tensor factorization, we derive a universal hypothesis space implemented by an arithmetic circuit over functions applied to local data structures (e.g. image patches). The resulting networks first pass the input through a representation layer, and then proceed with a sequence of layers comprising sum followed by product-pooling, where sum corresponds to the widely used convolution operator. The hierarchical structure of networks is born from factorizations of tensors based on the linear weights of the arithmetic circuits. We show that a shallow network corresponds to a rank-1 decomposition, whereas a deep network corresponds to a Hierarchical Tucker (HT) decomposition. Log-space computation for numerical stability transforms the networks into SimNets.
منابع مشابه
Expressive power of recurrent neural networks
Deep neural networks are surprisingly efficient at solving practical tasks, but the theory behind this phenomenon is only starting to catch up with the practice. Numerous works show that depth is the key to this efficiency. A certain class of deep convolutional networks – namely those that correspond to the Hierarchical Tucker (HT) tensor decomposition – has been proven to have exponentially hi...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملAnalysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions
The driving force behind convolutional networks – the most successful deep learning architecture to date, is their expressive power. Despite its wide acceptance and vast empirical evidence, formal analyses supporting this belief are scarce. The primary notions for formally reasoning about expressiveness are efficiency and inductive bias. Expressive efficiency refers to the ability of a network ...
متن کاملXpressive Power of Recurrent Neural Net - Works
Deep neural networks are surprisingly efficient at solving practical tasks, but the theory behind this phenomenon is only starting to catch up with the practice. Numerous works show that depth is the key to this efficiency. A certain class of deep convolutional networks – namely those that correspond to the Hierarchical Tucker (HT) tensor decomposition – has been proven to have exponentially hi...
متن کاملDevelopment of visual-motor perception in pupils with expressive writing disorder and pupils without expressive writing disorder: a comparative statistical analysis
Background: Learning disability is one of the most noticed subjects for behavioral specialists. Most of the learning difficulties are caused by senso-motor development and neurological organization. The main purpose of the present research is to examine the role of delayed perceptual-motor development and brain damage in origination of expressive writing disorder (EWD). Methods: The studi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016